& RedHat
Training and Certification

Streams for Apache Kaftka
Break-Fix Lab

Red Hat Streams for Apache Kafka 2.7 BF4821L

Student Workbook
Edition 1

Streams for Apache Kafka Break-Fix Lab
Red Hat Streams for Apache Kafka 2.7 BF4821L
Edition 1

Publication date 20240909

Authors: Grega Bremec
Course Architects: Grega Bremec
Editors: Grega Bremec

© 2024 Red Hat, Inc.

The contents of this course and all its modules and related materials, including handouts to
audience members, are © 2024 Red Hat, Inc.

No part of this publication may be stored in a retrieval system, transmitted or reproduced in
any way, including, but not limited to, photocopy, photograph, magnetic, electronic or other
record, without the prior written permission of Red Hat, Inc.

This instructional program, including all material provided herein, is supplied without any
guarantees from Red Hat, Inc. Red Hat, Inc. assumes no liability for damages or legal action
arising from the use or misuse of contents or details contained herein.

If you believe Red Hat training materials are being used, copied, or otherwise improperly
distributed, please send email to training@redhat.com or phone toll-free (USA) +1 (866) 626-
2994 or +1 (919) 754-3700.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, JBoss, OpenShift, Fedora, Hibernate,
Ansible, RHCA, RHCE, RHCSA, Ceph, and Gluster are trademarks or registered trademarks of
Red Hat, Inc. or its subsidiaries in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle American, Inc. and/or its affiliates.

XFS® is a registered trademark of Hewlett Packard Enterprise Development LP or its
subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js® is a trademark of Joyent. Red Hat is not formally related to or endorsed by the official

mailto:training@redhat.com

Joyent Node.js open source or commercial project.

The OpenStack word mark and the Square O Design, together or apart, are trademarks or
registered trademarks of OpenStack Foundation, in the United States and other countries and
are used with the OpenStack Foundation's permission. Red Hat, Inc. is not affiliated with,
endorsed by, or sponsored by the OpenStack Foundation or the OpenStack community:.

All other trademarks are the property of their respective owners.

Table of Contents

Streams for Apache Kafka Break-Fix Lab
Introduction
Streams for Apache Kafka Break-Fix Lab
1. Introduction to Break-Fix Labs
1.1. Guided Exercise Deploying Streams for Apache Kafka
2. Kafka Producer and Consumer Clients
2.1. Getting to know the client apps and tools
2.2. Guided Exercise Getting to know the client apps and tools
3. Producer Delivery Semantics
3.1. Guided Exercise (Not) Requiring Acknowledgments
3.2. Guided Exercise Replicating Topics
3.3. Guided Exercise In-Sync Replicas
3.4. Guided Exercise Idempotent Broker
4. Consumer Delivery Semantics
4.1. Guided Exercise Committing Offsets Too Early
4.2. Guided Exercise Committing Offsets Too Late

© o U1 B b

10
15
23
24
29
35
39
43
44
47

Introduction

Streams for Apache Kafka Break-Fix Lab

This lesson is a collection of scenarios whereby antipatterns are demonstrated to cause erroneous
behaviour. Students are guided (and encouraged to further research) the behaviour, establish root
cause, and sanitise the issues.

Course Objectives

* Identify antipatterns in configuration and application development.

» Correct configuration, code, and behaviour to adhere to best practices.

Audience

* Application Developers

¢ Infrastructure Engineers

Prerequisites

» AD482 - Developing Event-driven Applications with Apache Kafka and Red Hat AMQ Streams

Chapter 1. Introduction to Break-Fix Labs

Goal

Configure the lab environment to support the break-fix session.

Sections

* Deploying Streams for Apache Kafka (Guided Exercise)

1.1. Guided Exercise Deploying Streams for Apache
Kafka

Perform initial configuration of projects and artifacts.

Outcomes

* Ensure the lab environment is configured correctly.

 Test operation of the environment.

Instructions

1. Ensure prerequisites are on your system:
o Java 17 (or 21) SDK
o Apache Maven (the lab was tested to work with release 3.9)
o Streams for Apache Kafka 2.7.0
> Bourne-compatible shell and basic Unix command-line tools (such as sort and diff)

- optionally, an IDE (such as Visual Studio Code), if you want to examine the code

You can download Streams for Apache Kafka from
NOTE https://developers.redhat.com/products/streams-for-apache-kafka/
download/.

2. Clone the Git repository with source code andlab materials.

1. Create a working directory, for example 1abs.

$ mkdir labs
$ cd labs

2. Extract the Streams for Kafka ZIP file here.

$ unzip -q ~/Downloads/amq-streams-2.7.0-bin.zip

Use your own download directory here, it might be different than

NOTE
~/Downloads for you.

3. Rename the directory to just kafka for easier use.
$ mv kafka_2.13-3.7.0.redhat-00007 kafka

4. Clone the Git repository into the working directory.

https://developers.redhat.com/products/streams-for-apache-kafka/download/
https://developers.redhat.com/products/streams-for-apache-kafka/download/

$ git clone https://github.com/benko/streams-bf-1lab-materials/

Cloning into 'streams-bf-lab-materials’...

remote: Enumerating objects: 297, done.

remote: Counting objects: 100% (297/297), done.

remote: Compressing objects: 100% (113/113), done.

remote: Total 297 (delta 92), reused 291 (delta 86), pack-reused @ (from 0)
Receiving objects: 100% (297/297), 36.70 KiB | 3.06 MiB/s, done.

Resolving deltas: 100% (92/92), done.

If you get a complaint from Git, and the directory looks empty, either remove
NOTE it and use git clone -b main, or enter the directory and use git checkout
main to switch to the main branch.

5. Copy the broker and Zookeeper properties from materials to working directory.

$ cp streams-bf-lab-materials/labs/broker* \
streams-bf-lab-materials/labs/zookeeper.properties .

6. The contents of your working directory should now look like the below listing.

$ 1s -1

total 32

-rw-r--r--@ 1 johndoe staff 926 10 Sep 14:31 broker@.properties
-rw-r--r--@ 1 johndoe staff 926 10 Sep 14:31 broker1.properties
-rw-r--r--@ 1 johndoe staff 926 10 Sep 14:31 broker2.properties
drwxr-xr-x@ 9 johndoe staff 288 10 Sep 14:36 kafka/

drwxr-xr-x@ 8 johndoe staff 256 10 Sep 14:29 streams-bf-lab-materials/
-rw-r--r--@ 1 johndoe staff 101 10 Sep 14:31 zookeeper.properties

3. Start the Kafka broker cluster, each service in a separate window/tab.

1. Start Zookeeper first.

$./kafka/bin/zookeper-server-start.sh zookeeper.properties

[2024-09-11 22:15:50,105] INFO Reading configuration from:
./zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
[2024-09-11 22:15:50,112] INFO clientPortAddress is 0.0.0.0:2181
(org.apache.zookeeper.server.quorum.QuorumPeerConfig)

2. Start each of the three brokers.

$./kafka/bin/kafka-server-start.sh broker@.properties
[2024-09-11 22:15:58,087] INFO Registered kafka:type=kafka.Log4jController MBean
(kafka.utils.Log4jControllerRegistration$)

[2024-09-11 22:15:58,338] INFO Setting -D
jdk.tls.rejectClientInitiatedRenegotiation=true to disable client-initiated TLS
renegotiation (org.apache.zookeeper.common.X509Uti1)

[2024-09-11 22:15:58,416] INFO Registered signal handlers for TERM, INT, HUP
(org.apache.kafka.common.utils.LoggingSignalHandler)

[2024-09-11 22:15:58,420] INFO starting (kafka.server.KafkaServer)

$./kafka/bin/kafka-server-start.sh broker1.properties

[2024-09-11 22:15:58,087] INFO Registered kafka:type=kafka.Log4jController MBean
(kafka.utils.Log4jControllerRegistration$)

[2024-09-11 22:15:58,338] INFO Setting -D
jdk.tls.rejectClientInitiatedRenegotiation=true to disable client-initiated TLS
renegotiation (org.apache.zookeeper.common.X509Uti1)

[2024-09-11 22:15:58,416] INFO Registered signal handlers for TERM, INT, HUP
(org.apache.kafka.common.utils.LoggingSignalHandler)

[2024-09-11 22:15:58,420] INFO starting (kafka.server.KafkaServer)

$./kafka/bin/kafka-server-start.sh broker2.properties

[2024-09-11 22:15:58,087] INFO Registered kafka:type=kafka.Log4jController MBean
(kafka.utils.Log4jControllerRegistration$)

[2024-09-11 22:15:58,338] INFO Setting -D
jdk.tls.rejectClientInitiatedRenegotiation=true to disable client-initiated TLS
renegotiation (org.apache.zookeeper.common.X509Uti1)

[2024-09-11 22:15:58,416] INFO Registered signal handlers for TERM, INT, HUP
(org.apache.kafka.common.utils.LoggingSignalHandler)

[2024-09-11 22:15:58,420] INFO starting (kafka.server.KafkaServer)

When stopping the services, do it in reverse order (brokers first, Zookeeper
last). Simply press Ctrl-C in the corresponding window. Alternatively, use the
kafka-server-stop.sh script with the property file of the broker you want to
stop.

NOTE

3. Test communication. Request a list of topics in the broker cluster.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --1list

The command is expected to produce a blank line as its output - we have not
created any topics yet.

NOTE

This concludes the exercise.

Chapter 2. Kafka Producer and Consumer
Clients

Goal

Learn how to use the producer and consumer applications. Familiarize yourself with the additional
scripts.

Sections

* Getting to know the client apps and tools (and Guided Exercise)

2.1. Getting to know the client apps and tools

Objectives

* Learn about the various command-line options for the client apps.

» Familiarize yourself with the result processing scripts.

About the Producer and Consumer applications

Producer

The producer application is available in the code/core-api-producer/ directory of the cloned Git
repository.

You can run it by changing your working directory to that location, building it, and invoking
Maven's exec plugin.

$ cd streams-bf-lab-materials/code/core-api-producer/

$ mvn clean compile

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-producer >-------------
[INFO] Building core-api-producer 1.0.0-SNAPSHOT

[INFO] from pom.xml

L L

[INFO] --------mmmmm oo
[INFO] BUILD SUCCESS

[INFO] === oo oo s oo oo oo oo
[INFO] Total time: 3.000 s

[INFO] Finished at: 2024-09-13T11:55:31+02:00

[INFO] --------mmmm oo

$ mvn exec:java

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-producer >-------------
[INFO] Building core-api-producer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] ---------=-=--mmmmmmmm e e - L T
[INFO]

[INFO] --- exec:3.4.71:java (default-cli) @ core-api-producer ---
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...

When started, the producer application will send a specified number of messages to a topic of your

choice in the broker cluster.

It will also create a log containing each record that was sent to the broker, which you can then
compare with consumer's log for detection of lost or duplicate messages.

The producer supports the following application-specific system properties that affect its
behaviour:

» producer.topic, the topic to send records to, defaults to test-topic

 producer.num-rolls, number of send cycles, defaults to 1

* producer.num-records-per-roll, number of records per send cycle, defaults to 100

» producer.wait-after-roll, the amount of time (ms) to wait after each cycle, defaults to 5000;
useful if you need to perform an action after x records, before resuming the sending

e producer.wait-after-send, the amount of time (ms) to wait after each send, defaults to 0; useful
to artificially slow down sending

* producer.local-id, when writing log files, the sequence to append to the base name, defaults to
-1 (meaning no suffix); useful for multiple producers (i.e. producer-0.log, producer-1.1og, etc.)

* producer.payload-trunc, when starting up, whether to truncate the payload log, defaults to false
The following producer client options can also be controlled from the command line:

 producer.acks, wait for acknowledgments to sent batches, defaults to all
 producer.max-inflight, maximum unacknowledged batches of records, defaults to 5

 producer.idempotent, idempotency setting, defaults to true if the above two are all and at most 5,
otherwise false

* producer.batch, the maximum number of messages in a batch, defaults to 16384

* producer.linger, the amount of time (ms) to wait for more messages before sending the batch
anyway, defaults to 0

* producer.retries, the number of send retries when encountering an error, defaults to
2147483647

» producer.delivery-timeout, overall delivery timeout (linger + retry backoff + request timeout),
defaults to 120000

 producer.request-timeout, timeout when waiting for a response from the broker, defaults to
30000

» producer.retry-backoff, how long to wait (ms), initially, for a retry to be attempted, defaults to
100

* producer.retry-max, maximum wait before a retry (ms), defaults to 1000
If you want to set any of the above properties, simply set them on the command line using the -D

option.

$ mvn exec:java -Dproducer.num-records-per-rol1=50000 -Dproducer.acks=0
[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-producer >-------------
[INFO] Building core-api-producer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] --------=--=--mmmmmmmmm - - [jar J------- -
[INFO]

[INFO] --- exec:3.4.71:java (default-cli) @ core-api-producer ---
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...

Consumer

The consumer application is available in the code/core-api-consumer/ directory.

You can run it by changing your working directory to that location, building it, and invoking
Maven's exec plugin.

$ cd streams-bf-lab-materials/code/core-api-consumer/

$ mvn clean compile

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] ---------mmmmmmmmmmm e [jar]----------------- -

L] mmmmmm s oo
[INFO] BUILD SUCCESS

[INFO] ------mm oo
[INFO] Total time: 3.142 s

[INFO] Finished at: 2024-09-13715:45:36+02:00

[INFO] - oo m oo oo o

$ mvn exec:java

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[VJ[FD] ========cccsssscccocccasacaaaaas [Jal [s=====ssccessssssocccaaaaaaoaaas
[INFO]
[INFO] --- exec:3.4.71:java (default-cli) @ core-api-consumer ---

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...

When started, the consumer application will connect to a topic and start receiving messages from

it.

It will also create a log containing each record that was received from the broker. The idea is that
comparing producer and consumer payload logs will allow you to detect duplicate and/or lost
messages.

The consumer recognises three specific message payloads that cause it to act upon message value:

* quit, cleanly shut down
* crash, raise a RuntimeException and exit abnormally
* wait, block by invoking Thread.sleep(), the amount depends on consumer.wait-cmd-period
setting; see below
Information about these three messages is not written into the payload log.

The consumer supports the following application-specific properties that affect its behaviour:

* consumer.topic, the topic to receive records from, defaults to test-topic

* consumer.poll-period, maximum amount of time (ms) to wait for messages to arrive in one poll,
defaults to 1000

e consumer.wait-after-recv, the amount of time (ms) to wait after a batch is received, defaults to 0;
useful if you need to perform an action after a batch has been received, but before processing

* consumer.wait-after-batch, the amount of time (ms) to wait after a batch is processed, defaults
to 0; useful if you need to perform an action after a batch has been processed

* consumer.wait-after-record, the amount of time (ms) to wait after each processed record,
defaults to 0; useful to artificially slow down receiving

» consumer.ack-every-x-msgs, manually commit offsets every x records processed, defaults to null
(i.e. auto-commit = true); turns off auto-commit if set

 consumer.ack-after-batch, manually commit offsets after finishing a batch (and possibly waiting
for the requested amount of time, see the various wait options above); turns off auto-commit and
is exclusive with ack-every-x-msgs; if both are set, ack-after-batch takes precedence and ack-
every-x-msgs is turned off

* consumer.wait-cmd-period, when receiving a wait command, the amount of time (ms) to block
for, defaults to 5000

 consumer.local-id, when writing log files, the sequence to append to the base name, defaults to
-1 (meaning no suffix); useful for multiple consumers (i.e. consumer-0.1og, consumer-1.1og, etc.)

 consumer.payload-trunc, when starting up, whether to truncate the payload log, defaults to false
The following consumer client options can also be controlled from the command line:

* consumer.group-id, the consumer group to announce, defaults to test-app
e consumer.instance-id, consumer instance ID (for static consumers), defaults to null
 consumer.auto-commit, whether to automatically commit offsets, defaults to true

e consumer.ac-interval, how often (in ms) to commit offsets, defaults to 5000

e consumer.fetch-min-bytes, minimum amount of data to fetch, defaults to 1
* consumer.max-poll-recs, maximum number of records to fetch each poll, defaults to 500

* consumer.assignment-strategy, partition assignment strategy, one of coop, range, rr, and sticky
(default is coop)

» consumer.heartbeat-interval, how often to report liveness to broker (in ms), defaults to 3000

* consumer.session-timeout, how long (in ms) before the consumer is removed from the group for
lack of heartbeat, defaults to 45000; brokers may limit the minimum and maximum values for
this setting

e consumer.auto-offset-reset, what to do when no consumer offsets are found in the broker,
defaults to latest, can also be earliest or none (but do not use none)

If you want to set any of the above properties, simply set them on the command line using the -D
option.

$ mvn exec:java -Dconsumer.group-id=myapp -Dconsumer.instance-id=consumerd \
-Dconsumer.local-id=0 -Dconsumer.poll-period=500 -Dconsumer.max-poll-recs=50

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------

[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] ------===mmmmmmmmm e L T e it

[INFO]

[INFO] --- exec:3.4.1:java (default-cli) @ core-api-consumer ---

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO

com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...

Other Tools

A couple of scripts exist to aid-you in collecting the logs and cleaning up after a session.

* get-logs.sh will sort both producer and consumer logs and store them into producer.log and
consumer . log next to the script, removing the original logs in the process

* remove-logdirs.sh will remove all broker, Kafka Connect, and Zookeeper data; it should be
executed from the same directory where the broker property files are (e.g. the top-level
directory for the labs)

Break-Fix Labs Client Apps and Tools on GitHub
REFERENCES Kafka Producer Configuration Options

Kafka Consumer Configuration Options

https://github.com/benko/streams-bf-lab-materials/tree/main/code
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#consumerconfigs

2.2. Guided Exercise Getting to know the client apps
and tools

Test the consumer and producer apps in a reliable setting to verify their correct operation.

Try a simple misconfiguration to verify the scenario works predictably, and demonstrate the tool
use.

Outcomes

» Test the consumer and producer apps in a reliable setting to verify their correct operation.

* Try a simple misconfiguration to verify the scenario works predictably.

Prerequisites

Ensure that you have successfully completed the first exercise, setting up the lab environment.

Instructions
This exercise consists of two parts.

The first part is simply testing regular delivery with default client application options. It is a
verification of our lab environment of sorts, making sure everything works as expected.

The second part simulates message redelivery after consumer failure, not acknowledging any
messages.

1. Ensure your Zookeeper instance is running. Stopp all brokers except broker®0.
2. Start the consumer application with default settings.

1. In a terminal window, change your working directory to consumer app and start it.

$ cd streams-bf-lab-materials/code/core-api-consumer/

$ git pull
Already up to date.

$ mvn clean compile exec:java

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] ---------mmmmmmmmmmm e - [jar J----------- -

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Starting to poll for
batches of up to 500 records / up to 1000 ms...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.ConsumerRebalancelistenerImpl - NEW
PARTITIONS ASSIGNED: [test-topic-0, test-topic-1, test-topic-2]

2. Leave the consumer running and open a new terminal window.
3. Start the producer application with default settings.

1. Change your working directory to the producer app and start it.

$ cd streams-bf-lab-materials/code/core-api-producer/

$ git pull
Already up to date.

$ mvn clean compile exec:java

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-producer >-------------
[INFO] Building core-api-producer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] ---------=----cmmmmmmm e oo - [jar J----------mm

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.clients.producer.ProducerConfig - ProducerConfig values:

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Starting to produce 100
records per roll, 1 rolls...

[kafka-producer-network-thread | producer-1] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Sent: T:test-topic P:2 K:2
V:"I agree with everything you say, but I would attack to the death your right
to say it." -- Tom Stoppard (1937 -)

[kafka-producer-network-thread | producer-1] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Sent: T:test-topic P:2 K:5
V:"There is no nonsense so gross that society will not, at some time, make a
doctrine of it and defend it with every weapon of communal stupidity." --
Robertson Davies

[INFOT === m o m e o oo s oo e e o
[INFO] BUILD SUCCESS
[INFOT == == o m o oo s oo oo o oo s

[INFO] Total time: 1.297 s
[INFO] Finished at: 2024-09-13717:23:56+02:00
O

2. The producer had just sent 100 random quotes to the test-topic topic in the broker. Since
the topic did not exist beforehand, it was created with default settings.

3. Verify the producer payload log contains all the records.

$ we -1 payload.log
100 payload.log

4. Observe the consumer application and note that the received records were printed on the
console.

5. Send a quit message to consumer to initiate a clean shutdown.

1. In yet another terminal window, move to the lab directory and use kafka-console-
producer.sh to send a single message to the test-topic topic.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

2. Verify that the consumer application had indeed terminated.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:1
K:91 V:"I am here and you will know that I am the best and will hear me." --
Leontyne Price, 0 Magazine, December 2003
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:1
K:93 V:"I am here and you will know that I am the best and will hear me." --
Leontyne Price, 0 Magazine, December 2003
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received "quit" message.
Exiting.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO

org.apache.kafka.common.utils.AppInfoParser - App info kafka.consumer for
consumer-test-app-1 unregistered

3. Verify that the consumer payload log contains all the records.

$ we -1 payload.log
100 payload.log

6. Collect payload logs and compare them.

1. In the terminal window where your shell is at the lab top level directory, run the get-1ogs.sh
script.

$./streams-bf-lab-materials/code/get-1logs.sh
./streams-bf-lab-materials/code/core-api-producer/payload.log
./streams-bf-1lab-materials/code/core-api-consumer/payload.log

Producer and/or Consumer logs available in ./streams-bf-lab-materials/code - old
logs were removed.

2. Compare logs and observe they are identical.

$ diff streams-bf-lab-materials/code/producer.log \
streams-bf-lab-materials/code/consumer.log

NOTE No output from the diff command means the files are identical.

It is important that you do NOT delete the topic after the first part of this

IMPORTANT .
exercise.

In part two of this exercise, we will simulate some basic misconfiguration to ensure that "incorrect"

behaviour also works as expected.

1. Ensure your Zookeeper instance and broker® are still running.

2. Start the consumer application with auto-commit setting turned off and send some messages to
it.

1. In the consumer terminal, start the application with required settings. Leave it running.

$ mvn exec:java -Dconsumer.auto-commit=false

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[VJ[FD)] =========cc=ssssscoccazcczasoas L JAF [s======scccssssscoccccasasasomaas
[INFO]
[INFO] --- exec:3.4.71:java (default-cli) @ core-api-consumer ---

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

2. In the producer terminal, start the application with the default settings. Wait for it to
complete.

$ mvn exec:java

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-producer >-------------
[INFO] Building core-api-producer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[INFO] --------------mmmmmmmm oo - [jar J-----------m e
[INFO]

[INFO] --- exec:3.4.71:java (default-cli) @ core-api-producer ---
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.clients.producer.ProducerConfig - ProducerConfig values:

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.common.utils.AppInfoParser - App info kafka.producer for
producer-1 unregistered

L R = e S s SR
[INFO] BUILD SUCCESS

L B e
[INFO] Total time: 5.680 s

[INFO] Finished at: 2024-09-13T18:51:39+02:00

[INFO] ------------mmmmmmmmmmmmoccooomo oo

3. Verify that in the consumer terminal, the messages have actually been received.

4. Terminate the consumer by pressing Ctrl-C.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:1
K:91 V:"There is no nonsense so gross that society will not, at some time, make
a doctrine of it and defend it with every weapon of communal stupidity." --
Robertson Davies

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:1
K:93 V:"I agree with everything you say, but I would attack to the death your
right to say it." -- Tom Stoppard (1937 -)

nC

3. Restart the consumer and observe its behaviour.

1. In the consumer terminal, simply restart the application with the same settings.

$ mvn exec:java -Dconsumer.auto-commit=false

[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[VJIFD)] =========cc=ssss=coccazcczzsoas L JaF [s======scccssssscoscccasasamomaas
[INFO]

[INFO] --- exec:3.4.71:java (default-cli) @ core-api-consumer ---
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.internals.ConsumerCoordinator - [Consumer
clientId=consumer-test-app-1, groupld=test-app] (Re-)joining group

2. Observe that nothing seems to be going on. Be patient.

3. After a while (it will take almost 45 seconds), consumer receives 100 messages again.

Why is the above delay, and then a complete redelivery of all the
messages, seen?

The redelivery happens for a simple reason - we prevented the

IMPORTANT consumer from committing its last-seen message offsets, so the
broker resends the last 100 messages again and again, until a
consumer acknowledges reception.

Let's examine the reason forthe delay in the next steps.

4. Inspect broker logs and establish the cause for-delayed processing.

1. Examine the last 5 log records in the terminal where broker@ is running.

[2024-09-13 19:48:26,283] INFO [GroupCoordinator @]: Dynamic member with unknown
member id joins group test-app in Stable state. Created a new member 1id
consumer-test-app-1-96747000-5145-442f-b5d6-10e70b571373 and request the member
to rejoin with this id. (kafka.coordinator.group.GroupCoordinator)

[2024-09-13 19:48:26,285] INFO [GroupCoordinator @]: Preparing to rebalance
group test-app in state PreparingRebalance with old generation 3
(__consumer_offsets-36) (reason: Adding new member consumer-test-app-1-96747000-
5145-442f-b5d6-10e70b571373 with group instance id None; client reason: need to
re-join with the given member-id: consumer-test-app-1-96747000-5145-442f-b5d6-
10e70b571373) (kafka.coordinator.group.GroupCoordinator)

[2024-09-13 19:48:41,985] INFO [GroupCoordinator @]: Member consumer-test-app-1-
93e3edf3-1a08-4b26-bf79-6a2d1cc@780b in group test-app has failed, removing it
from the group (kafka.coordinator.group.GroupCoordinator)

[2024-09-13 19:48:41,986] INFO [GroupCoordinator @]: Stabilized group test-app
generation 4 (__consumer_offsets-36) with 1 members
(kafka.coordinator.group.GroupCoordinator)

[2024-09-13 19:48:41,995] INFO [GroupCoordinator @]: Assignment received from
leader consumer-test-app-1-96747000-5145-442f-b5d6-10e70b571373 for group test-
app for generation 4. The group has 1 members, @ of which are static.
(kafka.coordinator.group.GroupCoordinator)

2. It looks like the reason for delay is a rebalance of the consumer group test-app!

Because the old consumer was terminated abruptly, using Ctr1-C, it did not leave the group
cleanly. When the new consumer joins, it is not exactly clear what is going on. Is the new
consumer another consumer and we have two of them?

The broker therefore has to wait until either the old consumer's session times out or it
rejoins. Only then can it perform a correct rebalance and assign partitions.

5. Restart the consumer as a static instead of dynamic one.
1. In the consumer terminal window, press Ctrl1-C to terminate the consumer.

2. Restart the consumer, but this time set the consumer.instance-1id property.

$ mvn exec:java -Dconsumer.auto-commit=false -Dconsumer.instance-id=12345
[INFO] Scanning for projects...

[INFO]

[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT

[INFO] from pom.xml

[VJ[FD] ========ccc=scssccocccamaazaaaas [JAl [s=====ssccessssssoscccaasaasomaas
[INFO]
[INFO] --- exec:3.4.1:java (default-cli) @ core-api-consumer ---

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:1
K:93 V:"Do not pursue what is illusory - property and position: all that is
gained at the expense of your nerves decade after decade and can be confiscated
in one fell night. Live with a steady superiority over life - don't be afraid of
misfortune, and do not yearn after happiness; it is after all, all the same: the
bitter doesn't last forever, and the sweet never fills the cup to overflowing."
-- Alexander Solzhenitsyn (1918 -)

3. Note that there is again a delay as the previous instance did not exit cleanly. Wait for the
consumer to receive the messages and then interrupt it using Ctr1-C.

4. Repeat the same command once more. Note that the consumer immediately receives the
messages - there is no more delay.

5. Verify that the consumer protocol is now different - observe the last couple of records in the
broker log.

[2024-09-13 20:49:11,001] INFO [GroupCoordinator @]: Static member with
groupInstanceId=12345 and unknown member id joins group test-app in Stable
state. Replacing previously mapped member 12345-f2feb934-9a83-47a7-b268-
f6a3b5fe8afa with this groupInstanceld.

(kafka.coordinator.group.GroupCoordinator)

[2024-09-14 12:28:32,077] INFO [GroupCoordinator @]: Static member which joins
during Stable stage and doesn't affect selectProtocol will not trigger
rebalance. (kafka.coordinator.group.GroupCoordinator)

6. You can see that with an instance ID setting, the client is recognised as having been seen
already. There is no more wait for the old client's session to time out. Additionally, there is
no rebalancing.

7. Stop the client by pressing Ctr1-C in the console.
6. Clean up the lab environment.
1. Stop the broker by pressing Ctr1-C in the terminal window where it is running.
2. Stop the Zookeeper instance by pressing Ctr1-C in the terminal window where it is running.

3. At the lab top level directory, execute the remove-logdirs.sh script that will remove all log
directories for the services.

$./streams-bf-lab-materials/code/remove-logdirs.sh
WARNING: Removing log directories for Zookeeper, all brokers, and Kafka Connect.
MAKE SURE THE PROCESSES ARE NOT RUNNING!

Continue?
1) Yes

2) No

#? 1
Done.

This concludes the guided exercise.

Chapter 3. Producer Delivery Semantics

Goal

Refresh producer delivery options and side effects.

Sections

* (Not) Requiring Acknowledgments (Guided Exercise)
» Replicating Topics (Guided Exercise)
* In-Sync Replicas (Guided Exercise)

* Idempotent Broker (Guided Exercise)

3.1. Guided Exercise (Not) Requiring
Acknowledgments

Investigate how lack of acknowledgment requests affects delivery guarantee.

Outcomes

* See how acknowledgment settings affect delivery reliability.

Prerequisites

Ensure that you have successfully completed the first exercise on setting up the lab environment.

Instructions

1. Ensure Zookeeper and all three brokers are running.

1. Start Zookeeper first. In the lab directory (at the top level), invoke zookeeper-server-start.sh
script.

$./kafka/bin/zookeeper-server-start.sh zookeeper.properties

[2024-09-14 12:18:00,164] INFO Reading configuration from: zookeeper.properties
(org.apache.zookeeper.server.quorum.QuorumPeerConfig)

[2024-09-14 12:18:00,165] WARN zookeeper.properties is relative. Prepend ./ to
indicate that you're sure! (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
[2024-09-14 12:18:00,169] INFO clientPortAddress is 0.0.0.0:2181
(org.apache.zookeeper.server.quorum.QuorumPeerConfig)

2. Next, start all three brokers, each'in a new terminal.

$./kafka/bin/kafka-server-start.sh broker@.properties
[2024-09-14 12:40:54,603] INFO Registered kafka:type=kafka.lLog4jController MBean
(kafka.utils.Log4jControllerRegistration$)

[2024-09-14 12:40:55,691] INFO [zk-broker-0-to-controller-alter-partition-
channel-manager]: Recorded new ZK controller, from now on will use node
172.16.83.208:9092 (id: @ rack: null)
(kafka.server.NodeToControllerRequestThread)

$./kafka/bin/kafka-server-start.sh broker1.properties
[2024-09-14 12:40:54,603] INFO Registered kafka:type=kafka.lLog4jController MBean
(kafka.utils.Log4jControllerRegistration$)

[2024-09-14 12:40:55,691] INFO [zk-broker-1-to-controller-alter-partition-
channel-manager]: Recorded new ZK controller, from now on will use node
172.16.83.208:9092 (id: @ rack: null)

(kafka.server.NodeToControllerRequestThread)

$./kafka/bin/kafka-server-start.sh broker2.properties
[2024-09-14 12:40:54,603] INFO Registered kafka:type=kafka.lLog4jController MBean
(kafka.utils.Log4jControllerRegistration$)

[2024-09-14 12:40:55,691] INFO [zk-broker-2-to-controller-alter-partition-
channel-manager]: Recorded new ZK controller, from now on will use node
172.16.83.208:9092 (id: @ rack: null)
(kafka.server.NodeToControllerRequestThread)

2. Remove any payload logs that might have been left over from before.

1. From the top-level lab directory, run the remove-payload-1logs.sh script.

$./streams-bf-lab-materials/code/remove-payload-logs.sh
Removing payload logs in producer/consumer working directories...
./streams-bf-lab-materials/code/core-api-producer/payload.log
./streams-bf-1lab-materials/code/core-api-consumer/payload.log
Done.

3. Create a non-replicated topic with multiple partitions.

1. In the same terminal, invoke the kafka-topics,sh script with --create command.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --replication-factor 1 --create
Created topic test-topic.

2. Inspect the topic configuration, ensuring that each of the brokers is the leader for two
partitions.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \

--topic test-topic --describe
Topic: test-topic TopicId: YWDp... PartitionCount: 6 ReplicationFactor: 1
Configs:

Topic: test-topic Partition: @ Leader: 2 Replicas: 2 Isr: 2
Topic: test-topic Partition: 1 Leader: 1T Replicas: 1 Isr: 1
Topic: test-topic Partition: 2 Leader: @ Replicas: @ Isr: 0
Topic: test-topic Partition: 3 Leader: 2 Replicas: 2 Isr: 2
Topic: test-topic Partition: 4 Leader: 1 Replicas: 1 Isr: 1
Topic: test-topic Partition: 5 Leader: @ Replicas: @ Isr: 0

4. Send some records without acknowledgment receipts, stopping one of the brokers along the
way.

1. In the producer window, start the application to send 500000 messages without

acknowledgments. Be prepared to act quickly in the next step as the send only takes around 15
seconds!

$ mvn exec:java -Dproducer.acks=0 -Dproducer.num-records-per-roll=500000
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Setting idempotence to
false as acks != all.
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.clients.producer.ProducerConfig - ProducerConfig values:
acks = 0

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Starting to produce 500000
records per roll, 1 rolls...

[kafka-producer-network-thread | producer-1] INFO
org.apache.kafka.clients.Metadata - [Producer clientId=producer-1] Cluster ID:
cXuKjWSMSb2qRiXUokUTdw

2. While the producer is sending, stop one of the brokers by pressing Ctr1-C in the terminal
where it is running. Restart it, and proceed to stop a different broker. Repeat this,
alternating between brokers, a couple of times.

3. With one of the brokers stopped, observe that the producer has halted - it is not sending
messages.

4. Inspect the topic again, using the kafka-topics.sh command at the top of the lab directory.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \

--topic test-topic --describe
Topic: test-topic TopicId: YWDp... PartitionCount: 6 ReplicationFactor: 1
Configs:

Topic: test-topic Partition: @ Leader: 2 Replicas: 2 Isr: 2
Topic: test-topic Partition: 1 Leader: none Replicas: 1 Isr: 1
Topic: test-topic Partition: 2 Leader: @ Replicas: @ Isr: @
Topic: test-topic Partition: 3 Leader: 2 Replicas: 2 Isr: 2
Topic: test-topic Partition: 4 Leader: none Replicas: 1 Isr: 1
Topic: test-topic Partition: 5 Leader: @ Replicas: @ Isr: @

Note that two of the partitions have lost their leader - the broker that was just terminated.

Depending on which of the brokers you stopped, you might see different
output.

NOTE

5. Restart the stopped broker and wait for the sending to complete.

6. Run the consumer to see how many records were received by the brokers.

1. In the consumer terminal, start the application, telling it to receive all messages from the
topic, from the beginning.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Starting to poll for
batches of up to 500 records / up to 1000 ms...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received 500 records.
Processing.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:5
K:2 V:"It's going to come true like you knew it, but it's not going to feel like
you think." -- Rosie 0'Donnell, Today Show interview, 04-08-08

2. Cleanly shut down the consumer when it stops printing records - send it a quit message.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

3. Collect the logs with get-Togs.sh. You can issue the command in the consumer, or the
producer terminal.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload.log

Producer and/or Consumer logs available in .. - old logs were removed.

4. Compare the logs with diff - a number of messages should be missing.

$ diff ../producer.log ../consumer.log | wec -1
297

$ diff ../producer.log ../consumer.log | tail -n5

< test-topic,2,394140,"We are advertis'd by our loving friends." -- William
Shakespeare (1564 - 1616)

< test-topic,2,394142,"Anyone who goes to a psychiatrist ought to have his head

examined." -- Samuel Goldwyn (1882 - 1974)

< test-topic,2,394145,"I think the world is run by 'C' students." -- Al McGuire
< test-topic,2,394153,"Any fool can tell the truth, but it requires a man of
some sense to know how to lie well." -- Samuel Butler (1835 - 1902)

< test-topic,2,394155,"I wish you sunshine on your path and storms to season
your journey. I wish you peace in the world in which you live... More I cannot
wish you except perhaps love to make all the rest worthwhile." -- Robert A. Ward

The first character on each line pointing to the left means that the record
NOTE was found in producer.log, but not in consumer.log, meaning it never got
delivered to the consumer.

You might need to restart the sending and repeat the interruptions if
you get no lost messages. Try ~the -Dproducer.linger=200
-Dproducer.max-inflight=100 options if nothing else helps. The loss of
messages depends on many factors. Generally speaking, the more
responsive the system is, the less likely it is for us to observe the
above behaviour.

IMPORTANT

7. Delete the topic.

1. From the top-level lab directory, issue the kafka-topics.sh command to delete test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

Key Takeaways

If producer does not wait for acknowledgments from partition leaders, messages can be lost in the
case of broker outage or network communication issues.

This concludes the guided exercise.

3.2. Guided Exercise Replicating Topics

Configure topic replication in combination with acks to improve reliability.

Outcomes

* Test delivery with and without acknowledgments with replicated topics.

Prerequisites

Ensure that you have successfully completed the first exercise on setting up the lab environment.
Your Zookeeper and all three brokers should be running.

Instructions

1. Remove any payload logs that might have been left over from before. From the top-level lab
directory, run the remove-payload-1logs.sh script.

$./streams-bf-lab-materials/code/remove-payload-logs.sh
Removing payload logs in producer/consumer working directories...
./streams-bf-lab-materials/code/core-api-producer/payload.log
./streams-bf-1lab-materials/code/core-api-consumer/payload.log
Done.

2. Create a replicated topic with multiple partitions.

1. In the same terminal, invoke the kafka-topics.sh script with --create command.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --replication-factor 2 --create
Created topic test-topic.

2. Inspect the topic configuration, ensuring that each of the brokers is the leader for two
partitions, and each partition shows two replicas that are in-sync.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --describe

Topic: test-topic TopicId: _wtM... PartitionCount: 6 ReplicationFactor: 2

Configs:
Topic: test-topic Partition: @ Leader: @ Replicas: 0,1 Isr: @,
Topic: test-topic Partition: 1 Leader: 2 Replicas: 2,0 Isr: 2,
Topic: test-topic Partition: 2 Leader: 1 Replicas: Isr:
Topic: test-topic Partition: 3 Leader: @ Replicas: Isr:
Topic: test-topic Partition: 4 Leader: 2 Replicas: Isr:
Topic: test-topic Partition: 5 Leader: 1 Replicas: Isr:

3. Proceed as in the previous exercise. Start the producer, telling it to send 500000 records, not

requesting any acknowledgments.

$ mvn exec:java -Dproducer.acks=0 -Dproducer.num-records-per-roll=500000
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Setting idempotence to false
as acks != all.
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.clients.producer.ProducerConfig - ProducerConfig values:

acks = 0

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Starting to produce 500000
records per roll, 1 rolls...

[kafka-producer-network-thread | producer-1] INFO org.apache.kafka.clients.Metadata
- [Producer clientId=producer-1] Cluster ID: cXuKjWSMSb2qRiXU@kUTdw

4. While sending, stop one of the brokers by pressing Ctr1-Cin the terminal where it is running.
5. Observe that the producer keeps sending records without a noticeable pause or slow-down.

6. Inspect the topic again. Notice that its leaders have changed, but not the replica assignment. The
lost broker just does not show in the Isr list any more.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --describe
Topic: test-topic TopicId: _wtM... PartitionCount: 6 ReplicationFactor: 2
Configs:
Topic: test-topic Partition:
Topic: test-topic Partition: Leader: Replicas: Isr: 2,0
Topic: test-topic Partition: Leader: Replicas: Isr:

0 0 0,17 Isr: 0

1 2 2,0

2 2 1,2 2
Topic: test-topic Partition: 3 Leader: @ Replicas: 0,2 Isr: 0,2

4 2 2,1 2

5 0 1,0 1 0

Leader: Replicas:

Topic: test-topic Partition: Leader: Replicas: Isr:
Topic: test-topic Partition: Leader: Replicas: Isr

7. After sending completes, restart the stopped broker.

8. Inspect the topic to see that Isr reflects the restored broker, but the leaders have not changed.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --describe
Topic: test-topic TopicId: _wtM... PartitionCount: 6 ReplicationFactor: 2
Configs:
Topic: test-topic Partition: @ Leader: @ Replicas: 0,1 Isr: 0,1
Topic: test-topic Partition: 1 Leader: 2 Replicas: 2,0 Isr: 2,0

Topic: test-topic Partition: 2 Leader: 2 Replicas: 1,2 Isr: 2,1
Topic: test-topic Partition: 3 Leader: @ Replicas: 0,2 Isr: 0,2
Topic: test-topic Partition: 4 Leader: 2 Replicas: 2,1 Isr: 2,1
Topic: test-topic Partition: 5 Leader: @ Replicas: 1,0 Isr: 0,1

9. Run the consumer to see how many records were received by the brokers.

1. In the consumer terminal, start the application, telling it to receive all messages from the
topic, from the beginning.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Starting to poll for
batches of up to 500 records / up to 1000 ms...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received 500 records.
Processing.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:5
K:2 V:"It's going to come true like you knew it, but it's not going to feel like
you think." -- Rosie 0'Donnell, Today Show interview, 04-08-08

2. Cleanly shut down the consumer when it stops printing records - send it a quit message.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

3. Collect the logs with get-logs.sh. You can issue the command in the consumer, or the
producer terminal.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload.log

Producer and/or Consumer logs available in .. - old logs were removed.

4. Compare producer and consumer logs.

$ diff ../producer.log ../consumer.log | wec -1
367

$ diff ../producer.log ../consumer.log | tail -nb
< test-topic,4,47608,"If you think you can do a thing or think you can't do a

thing, you're right." -- Henry Ford (1863 - 1947), (attributed)

402710d402524

< test-topic,4,47611,"Any fool can tell the truth, but it requires a man of some
sense to know how to lie well." -- Samuel Butler (1835 - 1902)

402715d402528

< test-topic,4,47614,"There is no nonsense so gross that society will not, at
some time, make a doctrine of it and defend it with every weapon of communal
stupidity." -- Robertson Davies

You might need to restart the sending and repeat the interruptions if
you get no lost messages. Try the -Dproducer.linger=200
-Dproducer.max-inflight=100 options if nothing else helps. The loss of
messages depends on many factors: Generally speaking, the more
responsive the system is, the less likely it is for us to observe the
above behaviour.

IMPORTANT

The above proves that without acknowledgment requests, not even replication can prevent record
loss.

Let us repeat the above with -Dproducer.acks=1.

1. Recreate the topic with the same settings.

1. In the top-level lab directory, use kafka-topics.sh to delete and recreate the topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --replication-factor 2 --create
Created topic test-topic.

2. Start the producer, telling it to send 500000 records, requesting acknowledgments from the
leader only.

$ mvn exec:java -Dproducer.acks=1 -Dproducer.num-records-per-roll=500000
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO

com.redhat.training.kafka.coreapi.producer.Producer - Setting idempotence to false
as acks != all.
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.clients.producer.ProducerConfig - ProducerConfig values:

acks = 0

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Starting to produce 500000
records per roll, 1 rolls...

[kafka-producer-network-thread | producer-1] INFO org.apache.kafka.clients.Metadata
- [Producer clientId=producer-1] Cluster ID: cXuKjWSMSb2qRiXU@kUTdw

3. While sending, stop two out of the three brokers. If your system has the pkill command,
terminate them using pkill -f -KILL brokerX (where X is the number of the broker you want to
stop). Otherwise terminate them by pressing Ctr1-C in the terminal where they are running.

4. Observe the producer again stopped sending. Restart the last one of the two stopped brokers
you stopped.

The last broker you stopped will have been the leader for half of the
IMPORTANT partitions in the topic at the time you stopped it. If you restart the other
broker, it will be unable to resume the leader role.

5. When the producer completes its sending, restart the brokers.

6. Run the consumer and wait for it to stop receiving any new messages.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Starting to poll for batches
of up to 500 records / up to 1000 ms...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received 500 records.
Processing.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:5
K:2 V:"It's going to come true like you knew it, but it's not going to feel like
you think." -- Rosie 0'Donnell, Today Show interview, 04-08-08

7. Cleanly shut down the consumer when it stops printing records - send it a quit message.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

8. Collect the logs with get-1logs.sh. You can issue the command in the consumer, or the producer
terminal.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload.log

Producer and/or Consumer logs available in .. - old logs were removed.

9. Compare producer and consumer logs.

$ diff ../producer.log ../consumer.log | wec -1
1101

Observe that there are still lost records.

It is going to become increasingly difficult to get consistant data loss as
you activate more and more protective mechanisms. Repeat the tests as

IMPORTANT many times as necessary, adding disruptions to your system if necessary.
Disruption can be anything from a process reading the disks heavily, to a
high CPU load, or both.

10. Delete the topic. From the top-level lab directory, issue the kafka-topics.sh command to delete
test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

Key Takeaways

If producer does not wait for acknowledgments from partition leaders, not even replication helps
prevent data loss. Messages can even be lost in the case of broker outage when acknowledgments
are only received from leaders for individual partitions.

This concludes the guided exercise.

3.3. Guided Exercise In-Sync Replicas

Configure topics with a minimum number of in-sync replicas.

Outcomes

» Configure a topic and the producer for reliable at-least-once delivery.

Prerequisites

Ensure that you have successfully completed the first exercise on setting up the lab environment.
Your Zookeeper and all three brokers should be running.

Instructions

1. Remove any payload logs that might have been left over from before. From the top-level lab
directory, run the remove-payload-1logs.sh script.

$./streams-bf-lab-materials/code/remove-payload-logs.sh
Removing payload logs in producer/consumer working directories...
./streams-bf-lab-materials/code/core-api-producer/payload.log
./streams-bf-1lab-materials/code/core-api-consumer/payload.log
Done.

2. Create a replicated topic with multiple partitions and min.insync.replicas setting.

1. In the same terminal, invoke the kafka-topics.sh script with --create command.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --replication-factor 2 \
--config min.insync.replicas=2 --create

Created topic test-topic.

2. Inspect the topic configuration, ensuring that each of the brokers is the leader for two
partitions, and each partition shows two replicas that are in-sync.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \

--topic test-topic --describe
Topic: test-topic TopicId: _wtM... PartitionCount: 6 ReplicationFactor: 2
Configs: min.insync.replicas=2

Topic: test-topic Partition: @ Leader: @ Replicas: 0,1 Isr: 0,1
Topic: test-topic Partition: 1 Leader: 2 Replicas: 2,0 Isr: 2,0
Topic: test-topic Partition: 2 Leader: 1 Replicas: 1,2 Isr: 1,2
Topic: test-topic Partition: 3 Leader: @ Replicas: 0,2 Isr: 0,2
Topic: test-topic Partition: 4 Leader: 2 Replicas: 2,1 Isr: 2,1
Topic: test-topic Partition: 5 Leader: 1 Replicas: 1,0 Isr: 1,0

3. Test the producer and simulate a broker failure. Ensure the producer requests
acknowledgments from all replicas up to min.insync number.

$ mvn exec:java -Dproducer.acks=all -Dproducer.num-records-per-roll=500000
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...
[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
org.apache.kafka.clients.producer.ProducerConfig - ProducerConfig values:

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Starting to produce 500000
records per roll, 1 rolls...

[kafka-producer-network-thread | producer-1] INFO org.apache.kafka.clients.Metadata
- [Producer clientId=producer-1] Cluster ID: cXuKjWSMSb2qRiXU@kUTdw

4. While sending, stop one of the brokers by pressing Ctr1-C in the terminal where it is running.

5. In the producer terminal, notice that we start seeing errors about insufficient number of
replicas.

[kafka-producer-network-thread | producer-1] WARN
org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1]
Got error produce response with correlation id 1503 on topic-partition test-topic-
0, retrying (2147483609 attempts left). Error: NOT_ENOUGH_REPLICAS
[kafka-producer-network-thread | producer-1] WARN
org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1]
Got error produce response with correlation id 1505 on topic-partition test-topic-
3, retrying (2147483609 attempts left). Error: NOT_ENOUGH_REPLICAS

Clearly with min.insync.replicas set to the same number as replication

IMPORTANT
level, you can not afford to lose a single broker.

6. Restart the broker and wait for the producer to finish.

7. Recreate the topic with three replicas and min.insync.replicas set to two.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --replication-factor 3 \
--config min.insync.replicas=2 --create

Created topic test-topic.

It may take a while for the delete operation to complete. If you receive an error
about test-topic being marked for deletion, either wait a couple of seconds and
retry, or stop all the brokers and Zookeeper, and use the remove-logdirs.sh script
to completely remove the data stores.

NOTE

8. Restart the producer with the same settings, then stop two brokers when it starts sending
messages.

9. Observe that the producer stops again, with the same error as before.

[kafka-producer-network-thread | producer-1] WARN
org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1]
Got error produce response with correlation id 584 on topic-partition test-topic-2,
retrying (2147483642 attempts left). Error: NOT_ENOUGH_REPLICAS
[kafka-producer-network-thread | producer-1] WARN
org.apache.kafka.clients.producer.internals.Sender - [Producer clientId=producer-1]
Got error produce response with correlation id 585 on topic-partition test-topic-4,
retrying (2147483641 attempts left). Error: NOT_ENOUGH_REPLICAS

The difference this time is that you had to stop two out of three brokers for this to happen.

10. Restart one of the stopped brokers. Observe that the producer resumes sending.

11. There is no need to restart the third broker when the producer completes its sending. Collect the
messages in the consumer and compare the payload logs.

1. Start the consumer instructing it to reset its offsets to earliest message possible.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...
[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
org.apache.kafka.clients.consumer.ConsumerConfig - ConsumerConfig values:

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Starting to poll for
batches of up to 500 records / up to 1000 ms...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received 500 records.
Processing.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received: T:test-topic P:5
K:2 V:"It's going to come true like you knew it, but it's not going to feel like
you think." -- Rosie 0'Donnell, Today Show interview, 04-08-08

2. Cleanly shut down the consumer when it stops printing records - send it a quit message.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

3. Collect the logs with get-logs.sh. You can issue the command in the consumer, or the
producer terminal.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload.log

Producer and/or Consumer logs available in .. - old logs were removed.

4. Compare producer and consumer logs.

$ diff ../producer.log ../consumer.log | wec -1
0

This time around, there is no data loss.

Feel free to retry the test from step 7 onwards with varying degrees of severity in
stopping the brokers (such with kill signals).

12. Delete the topic when done. From the top-level lab directory, issue the kafka-topics.sh
command to delete test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete
Key Takeaways

The only way to prevent data loss is to replicate topics and set their min.insync.replicas to two or
more and ensure producers request acknowledgments from all replicas up to that number.

If you want the cluster to be fault-tolerant at the same time, make sure the topic's minimum ISR
setting is at least one less than the total number of available replicas.

This concludes the guided exercise.

3.4. Guided Exercise Idempotent Broker

Turn on producer idempotency protocol to prevent message duplication.

Outcomes

* Turn off producer idempotence protocol to see duplicate messages.

Prerequisites

Ensure that you have successfully completed the first exercise on setting up the lab environment.
Your Zookeeper and all three brokers should be running.

Instructions

1. Remove any payload logs that might have been left over from before. From the top-level lab
directory, run the remove-payload-1logs.sh script.

$./streams-bf-lab-materials/code/remove-payload-logs.sh
Removing payload logs in producer/consumer working directories...
./streams-bf-lab-materials/code/core-api-producer/payload.log
./streams-bf-1lab-materials/code/core-api-consumer/payload.log
Done.

2. Create a replicated topic with multiple partitions and min.insync.replicas setting. In the same
terminal, invoke the kafka-topics.sh script with --create command.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --replication-factor 3 \
--config min.insync.replicas=2 --create

Created topic test-topic.

3. Start the producer with idempotence protocol turned off. Set the maximum number of
unacknowledged batches very high. Allow incremental batching of records by setting linger to
one second. The acknowledgment setting is not strictly necessary, but it slightly improves the
chances of seeing duplicates. Execute the below command in the producer source code
directory.

$ mvn exec:java -Dproducer.num-records-per-rol1=500000 \
-Dproducer.idempotent=false -Dproducer.max-inflight=1000 \
-Dproducer.linger=1000 -Dproducer.acks=1

[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...

4. While the producer is sending, stop and restart various brokers several times in rapid
succession. The idea is to briefly interrupt sending, not to cause any longer outage.

5. When the producer finishes its sending, start the consumer and receive all the records.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...

6. When the consumer no longer shows any new messages, stop it cleanly.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

7. Collect the logs and compare them.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload.log

Producer and/or Consumer logs available in .. - old logs were removed.

$ diff ../producer.log ../consumer.log | we -1
3317

$ diff ../producer.log ../consumer.log | tail -n5
> test-topic,5,105680, "What makes the engine go? Desire, desire, desire." --
Stanley Kunitz, 0 Magazine, September 2003

4173653419034

> test-topic,5,105684, "We shall find peace. We shall hear the angels, we shall see
the sky sparkling with diamonds." -- Anton Chekhov (1860 - 1904), 1897
4173663419036

> test-topic,5,105688,"Fall seven times, stand up eight." -- Japanese Proverb

The first character on each line pointing to the right means that the record was
NOTE found in consumer.log, but not in producer.log, meaning the same record was
delivered to the consumer multiple times.

8. Turn on the producer idempotence protocol. Restart the application without any additional
options beyond the number of records. Producer settings default to using the idempotence
protocol.

$ mvn exec:java -Dproducer.num-records-per-rol1=500000
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.producer.Producer.main()] INFO
com.redhat.training.kafka.coreapi.producer.Producer - Opening payload log...

9. While the producer is sending, stop and restart various brokers several times in rapid
succession. The idea is to briefly interrupt sending, not to cause any longer outage.

10. When the producer finishes its sending, start the consumer and receive all the records.

$ mvn exec:java
[INFO] Scanning for projects...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...

11. When the consumer no longer shows any new messages, stop it cleanly.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

12. Collect the logs and compare them.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload.log

Producer and/or Consumer logs available in .. - old logs were removed.

$ diff ../producer.log ../consumer.log | we -1
0

Note that there are no duplicate records this time.
13. Delete the topic. From the top-level lab directory, issue the kafka-topics.sh command to delete

test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

Key Takeaways

Producer idempotence protocol ensures that brokers can recognise and throw away any records
that the producer has already sent, but still allows them to acknowledge these records. This
effectively prevents duplicate message delivery and ensures at-most-once delivery guarantee.

Together with topic replication, correctly configured min.insync.replicas, and producer setting
acks=all, this allows for an exactly-once delivery.

This concludes this guided exercise.

Chapter 4. Consumer Delivery Semantics

Goal
Refresh consumer delivery options and side effects.
Sections

* Committing Offsets Too Early (Guided Exercise)

* Committing Offsets Too Late (Guided Exercise)

4.1. Guided Exercise Committing Offsets Too Early

Observe how too frequent offset commit affects delivery guarantee.

Outcomes

* Experience message loss with large batches and frequent offset commit.

Prerequisites

Ensure that you have successfully completed the first exercise on setting up the lab environment.
Your Zookeeper and all three brokers should be running.

Instructions

1. Remove any payload logs that might have been left over from before. From the top-level lab
directory, run the remove-payload-1logs.sh script.

$./streams-bf-lab-materials/code/remove-payload-logs.sh
Removing payload logs in producer/consumer working directories...
./streams-bf-lab-materials/code/core-api-producer/payload.log
./streams-bf-1lab-materials/code/core-api-consumer/payload.log
Done.

2. Create a topic that will be used in this exercise. In the same terminal, invoke the kafka-topics.sh
script with --create command.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --create
Created topic test-topic.

3. Run the producer, sending 1500 records to the topic.

$ mvn exec:java -Dproducer.num-records-per-roll1=1500

4. Run the consumer. Include the instance-id property - this just ensures we do not have to wait
for rebalance upon restart. Include the local-id property - this makes the consumer use a
separate payload log every time we change this property. Instruct the consumer to manually
commit offsets every 50 processed records. Make it wait for 200 ms after each processed record,
to slow it down a bit and allow you to act while it is receiving.

After you see a Seen 50 records, committing offsets message in the log, press Ctrl-C in the
console to interrupt it.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest \

-Dconsumer .ack-every-x-msgs=50 -Dconsumer.wait-after-record=200 \
-Dconsumer.instance-id=12345 -Dconsumer.local-id=1
[INFO] Scanning for projects...
[INFO]
[INFO] ------------ < com.redhat.training.kafka:core-api-consumer >-------------
[INFO] Building core-api-consumer 1.0.0-SNAPSHOT
[INFO] from pom.xml

[I{IFD)] =========cc=ss===cosccaz=cz2=22= [JAF [s=======ccc=ssz==oscccaczszsom0ec
[INFO]
[INFO] --- exec:3.4.1:java (default-cli) @ core-api-consumer ---

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Opening payload log...

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Received 500 records.
Processing.

[com.redhat.training.kafka.coreapi.consumer.Consumer.main()] INFO
com.redhat.training.kafka.coreapi.consumer.Consumer - Seen 50 records, committing
offsets as ackEveryNum == 50

AC

5. Ensure the payload log recorded the processed records.

$ 1s -1 payload-1.1log
-rw-r--r--@ 1 johndoe staff 14989 16 Sep 12:12 payload-1.1log

$ we -1 payload-1.1log
53 payload-1.1og

6. Restart the consumer without any special options (except auto-offset-reset, instance-id and
local-id). The auto-offset-reset option ensures we restart receiving from the last committed
offset. Ensure local-id is different from the previous run. Let it receive all the records.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest \
-Dconsumer.instance-1d=12345 -Dconsumer.local-id=2

7. Cleanly shut down the consumer when it stops printing records - send it a quit message.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

8. Collect the logs and compare them.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload-1.1log

../core-api-consumer/payload-2.1log

Producer and/or Consumer logs available in .. - old logs were removed.

$ diff ../producer.log ../consumer.log | we -1
497

$ diff ../producer.log ../consumer.log | tail -n5

< test-topic,5,9980,"Any fool can tell the truth, but it requires a man of some
sense to know how to lie well." -- Samuel Butler (1835 - 1902)

< test-topic,5,9986,"Do not pursue what is illusory - property and position: all
that is gained at the expense of your nerves decade after decade and can be
confiscated in one fell night. Live with a steady superiority over life - don't be
afraid of misfortune, and do not yearn after happiness; it is after all, all the
same: the bitter doesn't last forever, and the sweet never fills the cup to

overflowing." -- Alexander Solzhenitsyn (1918 -)

< test-topic,5,9988,"I am here and you will know that I am the best and will hear
me." -- Leontyne Price, 0 Magazine, December 2003

< test-topic,5,9990,"It's going to come true like you knew it, but it's not going
to feel like you think." -- Rosie 0'Donnell, Today Show interview, 04-08-08

< test-topic,5,9992,"The nation behaves well if it treats the natural resources as
assets which it must turn over to the next generation increased, and not impaired,
in value." -- Theodore Roosevelt (1858 - 1919), Speech before the Colorado Live
Stock Association, Denver, Colorado, August 19, 1910

Your number ‘of lost records will be different, depending on the first received

NOTE
batch size and the amount of time you waited before interrupting the consumer.

9. Delete the topic. From the top-level lab directory, issue the kafka-topics.sh command to delete
test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

Key Takeaways

Receiving large batches of records and acknowledging reception too early (because auto-commit
interval is set too frequently) can lead to data loss.

This concludes the guided exercise.

4.2. Guided Exercise Committing Offsets Too Late

Observe how lazy offset commit affects delivery guarantee.

Outcomes

» Experience duplicate messages with lazy offset commits after a rebalance.

Prerequisites

Ensure that you have successfully completed the first exercise on setting up the lab environment.
Your Zookeeper and all three brokers should be running.

Instructions

1. Stop all the brokers. You can leave Zookeeper running. At the top-level lab directory, use kafka-
server-stop.sh script to shut them down.

$./kafka/bin/kafka-server-stop.sh broker@.properties
$./kafka/bin/kafka-server-stop.sh broker1.properties
$./kafka/bin/kafka-server-stop.sh broker2.properties

2. Add lower allowances for minimum consumer heartbeat and session timeout. In all three
broker property files, add the following lines at the end.

group.consumer .min.heartbeat.interval.ms=500
group.consumer.min.session.timeout.ms=500
group.min.session.timeout.ms=500

3. Restart all three brokers.

4. After all the brokers are running, verify they are using correct configuration. In the lab top-level
directory, use the kafka-configs.sh command to interrogate about currently active settings.

$./kafka/bin/kafka-configs.sh --bootstrap-server localhost:9092 \
--entity-type brokers --all --describe | \
grep -E "(MA11|group.*\\.min\\. (heartbeat|session))"
A1l configs for broker @ are:
group.consumer.min.heartbeat.interval.ms=500 sensitive=false
synonyms={STATIC_BROKER_CONFIG:group.consumer.min.heartbeat.interval.ms=500,
DEFAULT_CONFIG:group.consumer.min.heartbeat.interval.ms=5000}
group.consumer.min.session.timeout.ms=500 sensitive=false
synonyms={STATIC_BROKER_CONFIG:group.consumer.min.session.timeout.ms=500,
DEFAULT_CONFIG:group.consumer.min.session.timeout.ms=45000}
group.min.session.timeout.ms=500 sensitive=false
synonyms={STATIC_BROKER_CONFIG:group.min.session.timeout.ms=500,
DEFAULT_CONFIG:group.min.session.timeout.ms=6000}

A1l configs for broker 1 are:

A1l configs for broker 2 are:

Ensure all three brokers report the same settings for the above properties.

5. Create a topic with multiple partitions. In the same directory, use the kafka-topics.sh script to
create the test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --partitions 6 --create
Created topic test-topic.

6. Start the producer to send 50000 records to the topic.

$ mvn exec:java -Dproducer.num-records-per-rol1=50000

7. Start a consumer. Set its auto-commit interval to something very lazy. Also ensure that a
rebalance will happen fairly quickly when we add another consumer in the next step. Slow the
consumer down a little bit to give yourself more, time to repeat the command in another
window in the next step.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest \
-Dconsumer.ac-interval=30000 -Dconsumer.assignment-strategy=rr \
-Dconsumer.session-timeout=1000 -Dconsumer.heartbeat-interval=500 \
-Dconsumer.wait-after-batch=2500 -Dconsumer.fetch-min-bytes=16374 \
-Dconsumer .max-poll-recs=5000 -Dconsumer.payload-trunc=false \
-Dconsumer.local-id=1

8. In another terminal window, repeat the same command. Only change the consumer's local-id
property.

$ mvn exec:java -Dconsumer.auto-offset-reset=earliest \
-Dconsumer.ac-interval=30000 -Dconsumer.assignment-strategy=rr \
-Dconsumer.session-timeout=1000 -Dconsumer.heartbeat-interval=500 \
-Dconsumer.wait-after-batch=2500 -Dconsumer.fetch-min-bytes=16374 \
-Dconsumer .max-poll-recs=5000 -Dconsumer.payload-trunc=false \
-Dconsumer.local-id=2

You must issue the second command while the first consumer is still
IMPORTANT receiving messages. Increase the wait-after-batch value if the first
consumer finishes too quickly.

9. While both consumers are receiving messages, stop one of them for at least 3-4 seconds and
then restart it, to force two more repartitioning events.

10. After both consumers stop printing new records on the console, send two quit messages to
terminate them cleanly.

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

$ echo quit | ./kafka/bin/kafka-console-producer.sh \
--bootstrap-server localhost:9092 --topic test-topic

11. Collect the payload logs and compare them.

$../get-logs.sh

WARNING: Existing logs will be overwritten. Do you want to continue?
1) Yes

2) No

#? 1

../core-api-producer/payload.log

../core-api-consumer/payload-1.1log

../core-api-consumer/payload-2.1log

Producer and/or Consumer logs available in .. - old logs were removed.

$ diff ../producer.log ../consumer.log | we -1
9977

$ diff ../producer.log ../consumer.log | tail -n5

> test-topic,3,9984,"We shall find peace. We shall hear the angels, we shall see
the sky sparkling with diamonds." -- Anton Chekhov (1860 - 1904), 1897

33373338372

> test-topic,3,999,"Your primary goal should be to have a great life. You can still
have a good day, enjoy your child, and ultimately find happiness, whether your ex
is acting like a jerk or a responsible person. Your happiness is not dependent upon

someone else." -- Julie A., M.A. Ross and Judy Corcoran, Joint Custody with a Jerk:
Raising a Child with an Uncooperative Ex, 2011
33375a38375

> test-topic,3,9995,"I wish you sunshine on your path and storms to season your
journey. I wish you peace in the world in which you live... More I cannot wish you
except perhaps love to make all the rest worthwhile." -- Robert A. Ward

12. Delete the topic. From the top-level lab directory, issue the kafka-topics.sh command to delete
test-topic.

$./kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 \
--topic test-topic --delete

Key Takeaways

Acknowledging multiple records after processing them might expose the consumer to a rebalance
event, in which case it will potentially be unable to commit its offsets to the partitions it was
assigned to prior to rebalance. The brokers will treat those records as undelivered, sending them to
consumers again, in effect causing duplicate messages to be seen on the consumer side.

This concludes this guided exercise.

	Streams for Apache Kafka Break-Fix Lab
	Streams for Apache Kafka Break-Fix Lab
	Table of Contents
	Introduction
	Streams for Apache Kafka Break-Fix Lab

	Chapter 1. Introduction to Break-Fix Labs
	1.1. Guided Exercise Deploying Streams for Apache Kafka

	Chapter 2. Kafka Producer and Consumer Clients
	2.1. Getting to know the client apps and tools
	2.2. Guided Exercise Getting to know the client apps and tools

	Chapter 3. Producer Delivery Semantics
	3.1. Guided Exercise (Not) Requiring Acknowledgments
	3.2. Guided Exercise Replicating Topics
	3.3. Guided Exercise In-Sync Replicas
	3.4. Guided Exercise Idempotent Broker

	Chapter 4. Consumer Delivery Semantics
	4.1. Guided Exercise Committing Offsets Too Early
	4.2. Guided Exercise Committing Offsets Too Late

