1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
- import seaborn as sns
- from sklearn.metrics import classification_report, confusion_matrix
- wine_data = pd.read_csv("./WineQT.csv", delimiter=",")
- wine_features = wine_data.drop("quality", axis=1).drop("Id", axis=1)
- wine_labels = np.ravel(wine_data['quality'])
- from sklearn.model_selection import train_test_split
- x_train, x_test, y_train, y_test = train_test_split(wine_features, wine_labels, test_size=0.5, random_state=50)
- from sklearn.preprocessing import StandardScaler
- scaler = StandardScaler().fit(x_train)
- x_train = scaler.transform(x_train)
- x_test = scaler.transform(x_test)
- print("**** TESTING C-Support Vector Classification ****")
- from sklearn.svm import SVC
- svc_model = SVC()
- svc_model.fit(x_train, y_train)
- svc_y_predict = svc_model.predict(x_test)
- svc_cm = np.array(confusion_matrix(y_test, svc_y_predict, labels=[0,1,2,3,4,5,6,7,8,9,10]))
- svc_conf_matrix = pd.DataFrame(svc_cm)
- print(svc_conf_matrix)
- sns.heatmap(svc_conf_matrix, annot=True, fmt='g')
- plt.show()
|