123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- == Testing InstructLab Models Locally ==
- === What is InstructLab? ===
- There's a large variety of https://huggingface.co/models[models] available from https://huggingface.co[HuggingFace], and https://huggingface.co/instructlab[InstructLab] is an open-source collection of LLMs with tools that allow users to both use, and improve, LLMs based on Granite models.
- There are also model container images available on https://catalog.redhat.com/search?gs&q=granite%208b[Red Hat Ecosystem Catalog] (the link is just for the Granite 8b family).
- A https://developers.redhat.com/articles/2024/08/01/open-source-ai-coding-assistance-granite-models[Red Hat blog] by Cedric Clyburn shows how you can use Ollama and InstructLab to run LLMs locally in a lot more detail, so I'll keep it short and with a focus on Conda here.
- === Setting Up the Environment ===
- You can use one of the provided environment files, `env-ilab-25.yml`, to create a Conda environment with the `instructlab` package version `0.25.x`.
- This gives you the basic environment that enables you to start serving and chatting to various HuggingFace (and other) Transformer-based models.
- Just like with any other Conda environment, start by creating the desired configuration.
- [subs="+quotes"]
- ----
- $ *source conda-init.sh*
- (base) $ *mamba env create -y -f envs/env-ilab-25.yml*
- Channels:
- - conda-forge
- Platform: osx-arm64
- Collecting package metadata (repodata.json): done
- Solving environment: done
- Downloading and Extracting Packages:
- ...
- Preparing transaction: done
- Verifying transaction: done
- Executing transaction: done
- ...
- ----
- ====
- NOTE: The installation uses `pip` to install `instructlab` as there are no Conda Forge packages for it. Be patient, it takes quite some time.
- ====
- Activate the environment and create a `bash` completion file.
- [subs="+quotes"]
- ----
- (base) $ *mamba activate ilab-25*
- (ilab-25) $ *_ILAB_COMPLETE=bash_source ilab > ilab.completion*
- (ilab-25) $ *source ilab.completion*
- ----
- Check the system information.
- [subs="+quotes"]
- ----
- (ilab-25) $ *ilab system info*
- Platform:
- sys.version: 3.11.12 | packaged by conda-forge | (main, Apr 10 2025, 22:18:52) [Clang 18.1.8 ]
- sys.platform: darwin
- os.name: posix
- platform.release: 24.4.0
- platform.machine: arm64
- platform.node: foobar
- platform.python_version: 3.11.12
- platform.cpu_brand: Apple M1 Max
- memory.total: 64.00 GB
- memory.available: 25.36 GB
- memory.used: 14.97 GB
- InstructLab:
- instructlab.version: 0.25.0
- ...
- Torch:
- torch.version: 2.5.1
- ...
- __torch.backends.mps.is_built: True
- torch.backends.mps.is_available: True__
- llama_cpp_python:
- llama_cpp_python.version: 0.3.6
- _llama_cpp_python.supports_gpu_offload: True_
- ----
- The PyTorch `mps` and Llama `supports_gpu_offload` settings show that InstructLab is capable of using the M1 Max GPU for serving.
- === Downloading Models ===
- Visit the InstructLab page and choose a model to download (for this demo, I selected `granite-3.0-8b-lab-community`).
- Use the `ilab model download` command to pull it.
- By default, models will be stored in `~/.cache/instructlab/models/`, unless you say otherwise with the `--model-dir` option to `ilab model` command.
- [subs="+quotes"]
- ----
- (ilab-25) $ *ilab model download -rp instructlab/granite-3.0-8b-lab-community*
- INFO 2025-04-14 13:29:59,724 instructlab.model.download:77: Downloading model from Hugging Face:
- Model: instructlab/granite-3.0-8b-lab-community@main
- Destination: /foo/bar/.cache/instructlab/models
- ...
- INFO 2025-04-14 13:36:13,171 instructlab.model.download:288:
- ᕦ(òᴗóˇ)ᕤ instructlab/granite-3.0-8b-lab-community model download completed successfully! ᕦ(òᴗóˇ)ᕤ
- INFO 2025-04-14 13:36:13,171 instructlab.model.download:302: Available models (\`ilab model list`):
- +------------------------------------------+...+---------+--------------------------+
- | Model Name |...| Size | Absolute path |
- +------------------------------------------+...+---------+--------------------------+
- | instructlab/granite-3.0-8b-lab-community |...| 15.2 GB | .../models/instructlab |
- +------------------------------------------+...+---------+--------------------------+
- ----
- ====
- NOTE: LLMs are usually quite large (as the name suggests) so be patient and set aside sufficient amount of disk space. The above model is a total download of 17 GiB, so even on a fast link it takes a couple of minutes to download.
- ====
- Note that the absolute path to model is a directory - if you look inside it, there will be a subdirectory containing the actual download.
- The format of the model is HuggingFace _safetensors_, which requires the https://github.com/vllm-project/vllm.git[vLLM] serving backend, and is not supported on macOS by default.
- From here on, there are two options: either install vLLM manually, or use `llama.cpp` to convert the model to GGUF.
- === Installing vLLM on macOS ===
- If you used the InstructLab env file provided in this repo, you should already have `torch` and `torchvision` modules in the environment. If not, ensure they are available.
- First, clone Triton and install it.
- [subs="+quotes"]
- ----
- (ilab-25) $ *git clone https://github.com/triton-lang/triton.git*
- Cloning into 'triton'...
- ...
- (ilab-25) $ *cd triton/python*
- (ilab-25) $ *pip install cmake*
- Collecting cmake
- ...
- Successfully installed cmake-4.0.0
- (ilab-25) $ *pip install -e .*
- Obtaining file:///foo/bar/baz/triton/python
- ...
- Successfully built triton
- Installing collected packages: triton
- Successfully installed triton-3.3.0+git32b42821
- (ilab-25) $ *cd ../..*
- (ilab-25) $ *rm -rf ./triton/*
- ----
- Clone vLLM and build it.
- [subs="+quotes"]
- ----
- (ilab-25) $ *git clone https://github.com/vllm-project/vllm.git*
- Cloning into 'vllm'...
- ...
- (ilab-25) $ *cd vllm*
- (ilab-25) $ *sed -i 's/^triton==3.2/triton==3.3/' requirements/requirements-cpu.txt
- (ilab-25) $ *pip install -e .*
- Obtaining file:///foo/bar/baz/vllm
- ...
- Successfully built vllm
- Installing collected packages: vllm
- Successfully installed vllm-0.8.5.dev3+g7cbfc1094.d20250414
- (ilab-25) $ *cd ..*
- (ilab-25) $ *rm -rf ./vllm/*
- ----
- References:
- * https://github.com/triton-lang/triton[Triton Development Repository]
- * https://docs.vllm.ai/en/stable/getting_started/installation/cpu.html?device=apple[Building vLLM for Apple Silicon]
- === Converting Models to GGUF ===
- You can use https://github.com/ggerganov/llama.cpp.git[`llama.cpp`] to convert models from HF, GGML, and LORA model formats to GGUF, which InstructLab can serve even on a Mac.
- Clone and build `llama.cpp`.
- [subs="+quotes"]
- ----
- (ilab-25) $ *git clone https://github.com/ggerganov/llama.cpp.git*
- Cloning into 'llama.cpp'...
- ...
- (ilab-25) $ *cd llama.cpp*
- (ilab-25) $ *pip install --upgrade -r requirements.txt*
- Looking in indexes: https://pypi.org/simple, ...
- ...
- Successfully installed aiohttp-3.9.5 ...
- ----
- You can now use the various `convert_*.py` scripts. In our case, it would be HF (HuggingFace) to GGUF conversion.
- [subs="+quotes"]
- ----
- (ilab-25) $ *./convert_hf_to_gguf.py \*
- *~/.cache/instructlab/models/instructlab/granite-3.0-8b-lab-community/ \*
- *--outfile ~/.cache/instructlab/models/granite-3.0-8b-lab-community.gguf \*
- *--outtype q8_0*
- INFO:hf-to-gguf:Loading model: granite-3.0-8b-lab-community
- INFO:gguf.gguf_writer:gguf: This GGUF file is for Little Endian only
- INFO:hf-to-gguf:Exporting model...
- INFO:hf-to-gguf:gguf: loading model weight map from 'model.safetensors.index.json'
- INFO:hf-to-gguf:gguf: loading model part 'model-00001-of-00004.safetensors'
- ...
- INFO:hf-to-gguf:Model successfully exported to /foo/bar/.cache/instructlab/models/granite-3.0-8b-lab-community.gguf
- (ilab-25) $ ilab model list
- +------------------------------------------+...+---------+---------------------------------------+
- | Model Name |...| Size | Absolute path |
- +------------------------------------------+...+---------+---------------------------------------+
- | instructlab/granite-3.0-8b-lab-community |...| 15.2 GB | .../instructlab |
- | granite-3.0-8b-lab-community.gguf |...| 8.1 GB | .../granite-3.0-8b-lab-community.gguf |
- +------------------------------------------+...+---------+---------------------------------------+
- ----
- Reference: https://github.com/ggml-org/llama.cpp/discussions/2948[Tutorial: How to convert HuggingFace model to GGUF format] on GitHub.
- === Serving Models ===
- Start the model server.
- [subs="+quotes"]
- ----
- (ilab-25) $ *ilab model serve \*
- *--model-path /foo/bar/.cache/instructlab/models/granite-3.0-8b-lab-community.gguf*
- INFO 2025-04-14 14:49:05,624 instructlab.model.serve_backend:79: Setting backend_type in the serve config to llama-cpp
- INFO 2025-04-14 14:49:05,633 instructlab.model.serve_backend:85: Using model '/foo/bar/.cache/instructlab/models/granite-3.0-8b-lab-community.gguf' with -1 gpu-layers and 4096 max context size.
- ...
- INFO 2025-04-14 14:49:12,050 instructlab.model.backends.llama_cpp:233: Starting server process, press CTRL+C to shutdown server...
- INFO 2025-04-14 14:49:12,050 instructlab.model.backends.llama_cpp:234: After application startup complete see http://127.0.0.1:8000/docs for API.
- ----
- In another terminal, start a chat.
- [subs="+quotes"]
- ----
- (ilab-25) $ *ilab model chat*
- ╭─────────────────────────────────────── system ────────────────────────────────────────╮
- │ Welcome to InstructLab Chat w/ GRANITE-3.0-8B-LAB-COMMUNITY.GGUF (type /h for help) │
- ╰───────────────────────────────────────────────────────────────────────────────────────╯
- >>> *what are your specialties?*
- My specialties include providing assistance with general tasks such as setting up a new device, troubleshooting software issues, and answering basic questions about using technology.
- I can also help with more specific tasks related to Linux, such as configuring network settings, managing users and groups, and installing software packages. I have experience working with various Linux distributions, including Red Hat Enterprise Linux, Fedora, Ubuntu, and Debian.
- Additionally, I am familiar with a wide range of programming languages, tools, and frameworks, including Python, Java, C++, Ruby on Rails, AngularJS, React, and Node.js.
- I hope this information is helpful! Let me know if you have any other questions.
- ----
- Congratulations!
|